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ABSTRACT

The distribution of elevations on a cratered planetary
surface is computed from a theoretical model which assumes the
surface is altered only by the formation of crater bowls, rims,
and ejecta blankets. The broad inverse power law distribution
of crater diameters induces a very broad distributlion of
elevations with (asymptotic) inverse power law tails which, in
some cases, can be explicitly expressed. Typical surface
elevations grow at least as fast as the age of the surface,
although the volume of fragmental material grows more slowly
than the age of the surface. Estimates by Oberbeck and Quaide
(1967) of the distribution of the thickness of the fragmental
surface layer in Oceanus Procellarum are consistent with the
theory.
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DISTRIBUTION OF ELEVATIONS
ON A CRATERED PLANETARY SURFACE

1. INTRODUCTION AND SUMMARY

Much of the roughness of cratered planetary surfaces
such as on the Moon and Mars is in the form of crater bowls, rims,
and material such as dust blankets, blocks and boulders ejected
from craters. We will compute the distribution of elevations
on a cratered surface, considering only the contributions of
crater bowls, rims and smooth ejecta blankets. We assume that
craters are distributed at random on an initially plane surface,
with crater shape and size distribution appropriate to the
meteoroidal impact hypothesis. (We do not believe that the
impact hypothesis is necessarily correct, but it is the only
hypothesis with computable consequences.) The surface elevations
have a "moving average" Poisson point process representation,
with crater shape as the weight function. 1In some particular
cases, it is possible to compute the distribution of surface
elevations explicitly.

The distribution of surface elevations usually has
the form of a heavy-tailed inverse power law. The typical
surface elevation (mean value, where it exists) increases at
least as fast as the age of the surface. The elevations in-
crease faster than the age of the surface only if large craters
are sufficiently frequent. This fact notwithstanding, the rate
of production of fragmental material must decrease with time.

Some of the model predictions are verified by Oberbeck
and Quaide's estimate (1967) of the distribution of thickness of
the layer of fragmental material on Oceanus Procellarum.

2. CRATER MODEL

Some physical justification for the model functions
assumed here is given elsewhere (Marcus, 1968). At present we
will simply collect the necessary data. We assume that crater
bowls are paraboloidal in shape. The initial rim-to-floor
depth H(x) of the crater bowl is a power function of crater
rim diameter x (see Figure 3),

X (c.>0 , & >0) (1)

H(x) = C 0

0
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For craters of diameters up to about 5 to 15 kilometers, we
seem to have 6= 1 and C0 = 0.25 approximately. The initial

rim height R(x) of a crater of diameter x (see Fig. 3) is the
maximum height above the pre-crater mean local surface, and 1is
also assumed to be a power function

h

R(x) = RyX (RO >0 , h > 0) (2)

with h = 1 and Ry = 0.085 approximately for, roughly,

10 meters < x < 20 kilometers. The constant R. is rather

0
poorly determined. The value of RO above is taken from lunar

craters, but for terrestrial explosion craters we have only
RO = 0.055. Lunar and terrestrial craters agree more closely

on the value of CO.

The exterior rim of an impact or explosion crater is
somewhat irregular in shape, often being described as "hum-
mocky". We follow the suggestion of Carlson and Roberts (1963)
that the thickness of the fine material ejected from the crater
can be described by a power law. The thickness CB(x,r) of a

layer formed at a distance r from the center of a crater of
diameter x is

tglx,r) = R(x) (2r/x) K (r >x/2 , k > 0) (3)

For large explosion craters we seem to have k = 4 approximately
(3 <k <5 in almost all cases). We use the term "ejecta
blanket" rather loosely, since the exterior rim near the crater
wall also includes the uplifted surface underneath the fragmen-
tal material.

Upon combining (1), (2), and (3), we obtain a descrip-
tion of the elevation profile z(x,r) of a crater of diameter x
at a distance r from its center:

(x,r) H(X)[(Zr/x)2 - 1] + R(x)

!
Q
o
e
o
=
N
o
=
~
»
S~
A
1
—
+
o
>

if 0 <r < x/2 (4)
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g(x,r) = Roxh(x/Zr)k if x/2 < r (5)

We believe this description is usefully accurate.

The craters are assumed to be distributed randomly
over the surface, presumably (but not necessarily) a result
of meteoroidal impacts. The average number of craters of
diameter x per unit area per unit diameter interval which have
formed on the surface is given by an expected number density
£(x). Since we are concerned here only with mare surfaces, we
may assume that £(x) = F p(x), where p(x) is the probability
density function of new-born craters of diameter x,
0 <%y <x<x <=, and F is the cumulative mean number of

craters of diameter Xq to X formed per unilit area during the

lifetime of the surface (Marcus, 1966). The probability den-—
sity usually assumed is the inverse power law

y
y X
-~ 0 1 .

p(x) = if X. <X < X

0 otherwise (y > 0) (6)

The relevant value of y is rather uncertain. For postmare
craters y probably lies between 2.6 and 3.4, and may increase
slowly with decreasing Xx.

Because the value of y for postmare primary impact
craters smaller than 1 or 2 km diameter is rather large (between
2.6 and 3.4) it may be possible to ignore, to a considerable
extent, the contribution to surface roughness from possible
secondary impact craters. The diameter distribution for secondary
craters from a given primary is, like (6), an inverse power
law over a large range of diameters. But the population index
of secondary craters (corresponding to y in (6) is some number
w which is in general different from y. The value of w 1is
approximately 3 to 3.5 (Marcus, 1966). Walker (1967) has suggested
w = 3.34 or w = 3.56.

If y is larger than w, then at all diameters of interest
here most of the craters will be primary impact craters; if w is
larger than y, then secondary craters will predominate. Because
vy is comparable to w, if not actually larger, we can no longer
accept the statements by Marcus (1966) or Walker (1967) that
most lunar craters of 50 to 500 meters dlameter are of secondary
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impact or internal origin. Recent unpublished studies by

D. Gault (personal communication, April 12, 1968) also suggest
that, except for Statistically rare clusters of secondary
craters, most small craters on the lunar maria are of primary
impact origin. Furthermore, crater morphology does not

uniquely point to the origin of a crater. The "soft" morphology
which some authors believe indicative of secondary impact or
internal origin can also appear in old primary craters which
have suffered from slumping and micrometeor erosion (Ross, 1968).

3. TOTAL DEPTH EXCAVATED BY CRATERS

We may compute the total depth Z (R) excavated by

craters which cover the point R by assumlng a linear super-
position (Marcus, 1968).

74 (R) =fzc(x,r)dN(x,13 1) ")

where cc(x,r) is the elevation decrease due to the formation
of a crater of diameter x at a distance r = (length of r) from
R. The random variable dN(x,R + r) is the number of craters
of diameter x to x + dx formed in the small region d(R + r)
surrounding R+ r. Assuming that the secondary crater contri-

bution to surface roughness is negligible, we may justifiably
suppose that dN(x,R + r) is a Poisson point process with mean

value E(x)dx d(R + r), where &£(x) is the expected number den-

sity of craters of diameter x. With the representation (7)
we find the Z (R) has an "infinitely divisible" distribution

law. The probabllity density function of elevations pc(z) has
a characteristic functlon

et U2 pC(z)dz

¢C(u)

X 0
m

1ucc(x r)
= exp g(x)dx 2nr[e - 1]dr (8)
0
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Our model functions from (4) and (6) are

cc(x,r) =0 if r > x/2
= COXG[(2r/x)2 - 1] + Roxh if r < x/2 (9)
and
y
vy F x
0 1
g(x) = if x. <x < X
_ y _y+l 0 m
1 (xo/xm) X
= 0 otherwise (10)

After straightforward reductions, (8), (9), and (10) imply

TYyF x. 7 Xm
¢C(u) = ©Xp 41 ( 3 )Y]f (Yé}é)'l'l . Cl )
- - (xy/% % X 1uCyx

0

[ iuR xh
* e 0 1 - iuR xh
| - 0

[ iu(ROxh-COxﬁ) N 5
- le -1 - iu(Rox —Cox ) (11)

L

The calculations are greatly simplified if we can
allow X, 7 ®s Xg 0. The first is possible only if y > 2

which is physically probable.

In order to permit Xy > 0, we require

y<2+hn , Yy <2458 (12)
e xY=c , constant (13)

0
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Let us for the moment accept (12) and (13).
The calculations are further simplified by assuming
that
h =38 (1)

That crater rims and bowls should scale in the same manne? is
plausible for craters of up to about 5 to 15 kilometers diame-
ter.

With the transformations
y = R.X y = (C,.-R )Xh
0] ? 00

and (12), (13), and (14), we obtain from (11)

- myC 1 dy [ iuy _ _ s
po(u) eXp(HhCOiu o ‘[. = e 1 1uy]
0 o 7
- 1+l . _{_i_%?[e-iuy -1+ iuy] (15)
00 0
where
a = (y-2)/h R 0 <a <1 (16)

0> RO). For evaluation of the integrals appearing

in (15), see Gnedenko and Kolmogorov (1954). We obtain after
some reductions

(we assume C

po(u) = exp(—AC|u|u [1 - 18, sgn(u)tan(na/2)]) an
where
a = (y-2)/h
BC - [RO o+1 _ (CO_RO) otl ]/qéo o+l + (CQ-R0> otl ]
(18)

sgn(u) = +1 if u>0, sgn(u) = -1 if u<0
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_ myC atl at+l r(1l-a)
Ao = E%E—{%D + (CO-RO) ]a 7o cos(na/2)

0
(19)

The parameters satisfy

0 <a <1

—]_<BC<]_

The characteristic function ¢C(u) in (17) is of known

type, that of a stable distribution law (Gnedenko and Kolmogorov,
1954)., Unfortunately, it is not possible to obtain explicitly
the probability density function corresponding to ¢C(u) except

for a few specific cases. The only case for general BC is
o = 1/2, when (Zolotarev, 1954)

2
po(2z) = Real part of{}% [/F' e ¥ - 2iw(w)]} (20)
where
a = 1/2 s AC =1
z >0
w = [(1-8¢) - 1(1+85)1/2(2x)/? (21)

) w
w(w) = e“*’f exp(V2)av (22)
0
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This formula is not too useful except for BC = 0, when we can
express pc(z) in terms of PFresnel integrals. Some explicit

results for BC = 1 are listed in the next section, but are
not relevant here.

Some asymptotic results are available (Skorohod,
1954) which are of interest. Assuming Ay = 1, 0 < a < 1 and

-1 < BC < 1, we have

PC(Z) = %ﬁ%%%l[l + Bg tanz(na/2)]l/2(sin E% + arctan(sc tan E%-)
(z + =) (23)

pp(z) = i%%i%%;a[l + Bg tan2(m/2)]l/2 sin(i% - arctan(ec tan 1%)
(z » —=) (24)

The distribution of ZC is thus a heavy-tailed inverse power

law for large |z|, skewed toward positive or negative values
of z respectively, according as B, > 0 (CO < ZRO) or

Bo < 0 (CO > 2RO).

We cannot permit Xy * 0 when o > 1. However, if
a > 1, we can compute the mean value E{ZC} due to craters

(this does not exist if o < 1). We find from (11) that for
X+ o :
m 3

. d _ ayF _2}%% %o 0 %o
E{Zp} = -1 35 ¢o(w) o T X { - — ] (25)

where

y >2 + h , y > 2 + 8§ (26)
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If also
h =38
then
ryF Xg+h
E{ZC} = HT;:g:HT'[2RO - CO] (27)

The uncratered part of the surface has ZC = 0 with
probability e_A, where

Xn my P x Y
A = nx° g(x)dx/4 = 0 Y [ $-2 - %_2] (28)
X, (y=2)[1-(x5/x )1 Lxg X
assuming (10). Since y > 2, we can let X, > . But we must

then have A » « as Xy > 0. Thus, under the conditions under

which (17) was derived (0 < a < 1), with probability one the
surface is covered by craters completely.

In these calculations we have ignored a possibly
important difficulty. We have implicitly assumed that when-
ever a crater was formed at R+r, it changed the surface

elevation at R by the same amount, whatever the elevation
difference between R and Rty at the time the crater is

formed. The validity of this approximation depends to some
extent on the value of a. Preliminary studies (Marcus, 1968)
of the covariance function on a cratered surface show that if
0 < a < 1, the surface elevations are significantly correlated
(correlation coefficient 0.5) at distances up to about 20% of
the diameter of the largest crater affecting the roughness of
the region, but this distance falls to about 3% of the largest
crater diameter for o = 2. Thus the elevation difference will
probably be small if o < 1, but may be appreciable if o > 1.
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4. TOTAL HEIGHT OF EJECTA BLANKETS

Our usual assumption of linear superposition is
more justified for the building up of a fragmental surface
layer by accumulation of ejecta blankets than it is for the

addition of crater bowls. With the same assumptions as in (7),

we represent the elevation increase ZB(B) at point R due to
ejecta blanket formation by

Zg(R) = j;B(x,r)dN(x,B+§) (29)

where CB(X,P) is the blanket thickness from a crater of diame-
ter x formed a distance r = (length of r) away from R. We
denote the probability density of Zy by pB(Z), and the charac-
teristic function corresponding to pB(Z) by

o . X © .
) m iug, (x,r)
¢B(u) =f etU% pB(z)dx = exp[ g(x)dxf 2wr[e B - l]dr
- 00 XO 0
(30)
We use £(x) defined by (10) and
;B(x,r) =0 if r < x/2
= Roxh(x/2r)k if r > x/2 (5)
We obtain from (30), after some reductions,
F x .Y re’k *m ROXh iu
oo (u) = exp|— 0 0 dx [e”™-1]ay

0
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or, if y # 2 + 2h/k,

7yF XOY Rg/k
9g(u) = exp -
X
2(y-2-2h/k) |1 - (59)
m
h
R.x . (y-2)/h=-2/k
.‘[Om [eluy—l]dy{Ro . _ 1
2/k+1 (y=-2)/h-2/k y=-2-2h/k
R.X h y y Xm
070
h
R.x
L] 00 et - 13y 1 1
2/k+1 y=-2-2h/k y=2-2h/k
y X X
0 0 m

(32)

This result is not of great use as 1t stands. Appreciable

simplifications are possible if we can take x =+ =, X, > 0.
To achieve the first, we require
y>2+2h/k , k >2 (33)
from which we obtain
nyF x,¥ R (y-2)/h pe iuy
$n(u) = ex 0.9 [er ~ < Lldy
B p 2(y-2~2h/K) (y=2y/h+1
R.X h y
070
h :
2+(2h/k 2/k R .
'H'YF XO ( / )RO / OXO [eluy - 1]dy u
* 5 (y=3=2h/K) J27RF1 (34)
0

In order to assume X > 0 we require also

Yy <2+ h (35)
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Since we may validly assume
F = C/x,"
for some constant C, (34) and (35) imply

lim
xy>0 ¢gu) = exp(-xBIula[l -1 sgn(u)tan(na/2)]) (36)

X =
m

where from (33) and (35)

2/k < o = (y=2)/h < 1

*s = 2(y=2) (y=2-2h/K)

1"(1 - l;l—2)eos (W(Y;l—z)) (37)

(see, e.g., Gnedenko and Kolmogorov (1954) for evaluation of
the integral in (34)).

The limiting characteristic function (36) can be
inverted explicitly only if o = 1/3, 1/2, 2/3. Assuming we
have a depth scale on which Ag = 1, the probability density

pB(Z) corresponding to (36), i.e., for which

[>e]

pp(Z) = %; e~ 1uz ¢g(u)du

- OO

is, for z > 0, (Zolotarev, 1954)

)3/2 1/4 42 )1/2)

= S He_
pp(2) = ;‘gi7ﬁ(3z K1/3(3 313z

for o = 1/3 (38)



BELLCOMM, INC. - 13 -

1 1 -1/2z
pn(Z) e for . o = 1/2 (39)
B (2“)1/2 Z3/2

2
p(2) = (3/m)1/2 1 (167272

' 2

for a = 2/3 (4o)

and pg(Z) = 0 for z < 0, all a. X_(x) is a MacDonald function
and W_ (x) a Whittaker function. The density (39) is shown

3
in Fig. 1. However, we know that for any a, 0 < o < 1,
pB(Z) has, for large Z, the character of an inverse power law

with index «. Explicitly (Skorohod, 1954)

_ 2T (14a) sin(rna/2) 1
pg(2) = Tre + 0| —¥=3 (41)
T Z Z
for large Z, and AB = 1.

The heavy inverse power law tail (U41) occurs only
because we assume Xy > = This means that a given point on

the surface has a finite (if small) chance of being covered
by an ejecta blanket of any thickness whatever, no matter how
large. There must then be some (though not many) places on
the surface which have been greatly built up by crater forma-

tion. We identify these with the exterior rims of the largest
craters.

If y > 2 + h, we cannot permit Xq > 0 without changing
the model. 1In this case we could fix some size X, as the smallest
diameter for which :B(x,r) is defined by (3). For craters smaller
than X, Wwe would redefine cB(x,r) to take into account the

rapid relative decrease in crater rim height and relative

thinning out of the ejecta blanket with decreasing crater diameter.
The model functions are at present too poorly defined to make

these computations worthwhile; a reasonable choice for X1 however,

is about 5 to 10 meters (based on unpublished data of H. J. Moore).
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On the other hand, if vy > 2 + h then ZB has a finite
mean value E{ZB}. (This is not true if y < 2 + h.) We obtain

from (32) with Xy > 0,
- d _ Tk Ry 2+h
E{ZB} = =i "d"a' ¢B(U.) 4=0 = 2(1{—2)(7—2—1’1) B XO
(y > 2 + h) (42)

A test of the reasonability of the model is whether
or not the "typical" total blanket thickness 1s of a reasonable

Bl/“ if
a<l and E{ZB} if o>1. We conslider a typical lightly cratered

numerical size, where the "typical™ thickness is A

mare, defined by
2.6<y<3.4

F = 0.2 craters per square meter larger than
one meter in diameter

h =1
k = 4
RO = 0.085

The results are shown in Figure 2. Except for the unavoidable
(in the model) singularities at y = 2.5 = 2+2h/k and
y = 3 = 2+h, the blanket thickness is numerically plausible.

For 2.67<y<2.97, the typical blanket thickness varies
from 2.6 to 7 meters, which is reasonable (at y = 2.6 we obtain
17.4 meters, which is rather large). For y>3 we must specify
the minimum diameter X, at which craters can effectively

rework the surface. JSince almost certainly 1 cm<xo<10 m,

the average blanket thickness is almost certainly between 12 cm
and 7 m for 3.03<y<3.5, and is more likely between 37 cm and
4 m. The model is, therefore, not grossly inaccurate.

From the curves in Figure 1, it is evident that
positive stable laws with a<l are strongly concentrated around
their peak or "mode". We note that the mode Mo(a) increases

rapidly with increasing a. Thus, another measure of the
the central location of the distribution of ZB is
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1/a
Mo(a)AB

This is also plotted in Figure 2. The results are again
reasonable, ranging from 4 to 10 meters for 2.6<a<2.9.

5. TOTAL SURFACE ELEVATION

The surface elevation at R, Z(B), may be represented

as the sum of all the cratering events which have affected the
point R

2(R) = 25(R) + 24(R) = [ e(x,r)an(x,Rer) » (43)

where z(x,r) = ;B(x,r) + cC(x,r), as in (4). One easily veri-
fies that the random variables ZB and ZC are statistically

independent, since they pick up only the events for which

r > x/2 or r < x/2, respectively. The characteristic function
of Z is then simply

b, (W) = 4g(u) 44 (u) (44)

In the probable event that crater rims and bowls
scale similarly so that h = §, the distribution of Z is
readily described in some detail. If 2/k < a = (y=2)/h < 1,
then allowing x, -~ 0 and x> = yields, from (17) and (36)

b, (u) = eXp{—A]ula [1 - 18 sgn(u)tan(na/2)]) - (L5)

where

(L46)

™
|

(AB + ecxc)/(xB + xC)
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This is also a stable distribution law, and all the remarks
made about ZC for 0 < a < 1 apply equally well to Z, with A

replacing AC and B replacing BC.' Some preliminary estimated

elevation densities (Figure 5) by Rowan and McCauley (1966) and
Marcus (1967) show a heavy-tailed and positively skewed shape
like the densitles shown in PFigure 1.

In the event that o > 1, the mean value of Z is
just (assuming h = §)

0
T(y-2-1)

u&:;—)y R, - CO] (47)

from (27) and (42). This is positive if and only if

U(k-1) . ‘ _
Tx=2) RO > CO, but using the data of Section 2, with k = 4,
R, = 0.085 and C0 = 0.25, we have indeed ’

43 (0.085) = 0.51 > 0.25, so that the average surface eleva-

E{z} =

yF x, 2h [

e O

2
tion is increasing with time! In fact, E{Z} is positive if
Ry > 00/6 = 0.0417.

6. TEMPORAL BEHAVIOR OF SURFACE ELEVATION

We have seen that the scale of surface relief is
characterized by the parameter A in the case that a < 1 (46)
or by the mean value E{Z} in the case o > 1 (47). Both the
gquantities A and E{Z} are proportional to the cumulative
crater flux (F or C). However, the cumulative flux is roughly
proportional to the age 1 of the surface since the flux rate
has probably been only slowly varying with time, if not
actually constant. As usual, we must now distinguish the
cases a < 1 and o > 1.

If o« < 1, the quantity,xl/a (whose dimension is
length) characterizes the extent to which the distribution of
Z 1is spread out. Since ) is proportional to the age t of the

l/a. The location

1/a

surface, the dispersion is proportional to =t

of the center of the distribution is characterized by B8 A
(the unimodality of the stable distributions has not been
established, but is probable). Using the data of Section 2,

h=2¢6=1,Cj=0.25, we find that for RO = 0.085, B decreases

from 1.0 to 0.51 as y increases ffom 2.5 to 3.0 (o increases
from 0.5 to 1.0). For RO = 0.050, B decreases from 1.0 to

0.4Y4 as y increases from 2.5 to 3.0. The relatively large
positive value of B establishes the tendency of the surface to
grow upward relatively rapidly. Thils appears to be an in-
herent part of the model, not due to a volume defect, since
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elementary calculations show that the ratio of volume of the
crater rim (both interior and exterior) to volume of the true
crater increases from 0.56 when RO = 0.085 to 1.00 when

Ry = 0.0625, and to 1.46 when RO'= 0.050.

We note further that since a < 1, the elevation increases

as rl/a, faster than the increasing age of the surface. The
reason for this peculiar behavior is that the older a portion
of the surface, the greater its chance of being covered by a
really thick blanket of ejecta or riding up on a really large
rim. The conditions for this are that RO/CO be sufficiently

large, and that large craters are sufficiently frequent
(y <2+ h and x + «).

In the case a > 1 we face a different situation.
As (47) shows, the average value of the surface elevation is '
proportional to the age of the surface. The dispersion of

the distribution is again of the order of 11/“ with

o = (y=2)/h > 1; thus, the distribution of Z becomes relatively
more concentrated around its mean value with increasing age of
the surface. The tendency of the surface to grow upwards is
even more marked in this case than for o < 1, because of grow-
ing relative concentration of Z around its increasing mean
value E{Z}.

We note that this analysis has relatively little to

do with the rate of increase of the volume of fragmental
material on the surface. We consider this problem next.

7. RATE OF PRODUCTION OF FRAGMENTAL MATERIAL

We previously identified the fragmental material pro-
duced by a crater with the material in the exterior rim,
ignoring both the fragmental material within the crater (fall-
back and brecciated material) and the uplifted solid substrate
(if any) under the exterior rim. It did not matter then
whether the fragmental material ejected from a crater had been
freshly excavated or whether it was o0ld fragmental material
being reworked. This distinction 1s essential, as has been
noted by others (Orrok (1964), Meloy and Faust (1965)) who
have estimated the amount of fragmental material produced by
impacts during lunar history. We make (as did they) the
assumption that crater shape is the same whatever the nature
of the medium in which the crater is formed. We also now
assume h = § = 1.

A paraboloidal crater of diameter x across the rim
crest has diameter x(1 - P{O/Co)l/2 at the point at which
cc(x,r) = 0, Let V(x,z) be the volume of material excavated
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by a crater of rim diameter x whose center is on a point at
which the thickness of the fragmental layer 1s z. We assume
that the thickness of the fragmental layer varies sufficiently
slowly with the distance that the fragmental surface and its
cohesive substrate are locally flat, approximately. Then (see
Figure 3)

2
T X3 <CO-RO)

V(x,z) = § - 2/%(Cy-Ry) 1°
if 0 <z < (Cu=Ry)x
V(x,z) = 0 Aif z > (C,-R,)X (48)

Now let vF(t) be the volume of fragmental material produced
per unit area per unit time at time t, and let pF(z;t) be the

probability density function of the thickness of the fragmen-
tal surface at time t. Let f(t) = %E'F be the mean number of

craters formed per unit area per unit time at time t. Then

X 0
m
vF(t) = f(t)Jf p(x)dx V(x,z)pF(z;t)dZ (49)
XO 0

In order to correctly compute pF(Z;t) we must take

into account the actual time sequence of the formation of
craters and blankets at a point. This is not an altogether
straightforward problem and we will defer considering it for
the time being. It is evident that on a lightly cratered
surface, Most of the fragmental material has been produeced by a
few relatively rare large craters which themselves cover only a
small area on the surface. Consequently, outside the (assumed
rare) large craters, we can assume

pF(Z;t) = pB(Z;t) (50)

although in fact the thickness ZF of the fragmental layer is
not greater than Zy, and is usually less.
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It is evident from (49) that vF(t) is a decreasing
function of time, since the bulk of the probability in pF(z;t)

mgves'in the direction of increasing z, thus decreasing V(x,z),
with increasing time t. Attempts to work out explicit examples
assuming (50), ran into difficulties. If o < 1, most of the
volume of fragmental material is contributed by large craters
consequently we cannot assume X, > > as this leads to a ’

power law density (41) for ZB' If o > 1 we can allow X - «
m
but do not have any explicit results for pB(z).

L]

The.procedure used by Orrok (1964) and Meloy and
Faust (1965) 1s to equate the average volume of material
produced by a crater of diameter x at time ¢t

V(x,z) pF(z;t)dz

with the volume V(x,z(t)) of material produced by the impact
of a crater of diameter x into a layer of thickness

T
Zz(t) = VF(T)dT (51)

z{(t) is the thickness achieved by smoothing the whole volume
of fragmental material over the whole surface. With additional
assumptions, vF(t) can be found from this approach. The author

believes that the more precise formulation (49) merits further
study, in spite of 1ts greater mathematical complexity. How-
ever, our usual concern is with the distribution of the thick-
ness of the fragmental layer, which must necessarily take into
account the reworking and redeposition of material by crater
formation (perhaps by the methods of Section 4). -

8. SELECTION EFFECTS IN THE OBERBECK AND QUAIDE METHOD

The distribution of the thickness ZF of the fragmen-

tal surface layer in Oceanus Procellarum has been estimated by
Oberbeck and Quaide (1967) from crater morphology. Laboratory
simulations show that if a crater of diameter x is formed in a
layer of fragmental material of thickness a1x to 8% the

crater morphology is:
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(a) "Normal" if a. = 0.236 and a, = «,

1 2
(b) "Flat-bottom" if ay = 0.159 and ay = 0.236.
(¢) "Central mound" if a; = 0.108 and a, = 0.159.
(d) "Concentric ring" if a, = 0.108.

The lower limit a4 for concentric ring geometry may be on the

order of 0.01 to 0.04, since the experiments extended only to
a relative layer thickness of 0.055. It is clear that as
a| > 0 crater shape passes into an essentially normal or

conical geometry.

In comparing the laboratory studies with the Moon,
Oberbeck and Quaide used only "fresh" craters, although it 1is
likely that the definition of "fresh" varies slightly with
different diameters. Let go(x) be the number density of fresh

craters of diameter x. Denote by (m)go(x) the expected number

density of fresh craters of morphologlcal type m. The
selection effect occurs in the following way: A crater of

size x will be of morphological type m only if it happens to
form at a point at which al(m)x < ZF < a2(m); otherwise it will

have some other morphology. Pools of fragmental material of
given thickness are distributed more or less randomly across
the surface, as are the "fresh" craters, and of course they are
guite independent of each other. We thus compute

(m)g _(x) = g (x)Prob{a;(m)x < Zg < a,(m)x}
% (m)g (x) = £ (x) (52)

If x is sufficiently large, so is layer thickness al(m)x.

Our analysis of Section U, especially (41), suggests that for
large z, ZB and presumably also ZF have an inverse power law

distribution with index ¢. Thus, approximately for some
constant C',

Prob{al(m)x < Zg < az(m)x} = C'[al_a - az-a]la (53)

o
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provided al(m)x is sufficiently large. However, (6) implies
that for fresh craters

g (x) = ¢"/x'*L (54)

for some small constant C". Thus, for a.(m)x sufficiently
large L

= oron -o -a 1
(me (x) = cre fa; (m)™ - a,(m) ];a:;:z (55)
or
(Number of craters per unit area, of type m,
with diameter x or larger) = C"'(m)/xc"+Y (56)
where

orti(m) = L2 fay (™ - ay(m) 0]

In Figure 4 we compare the prediction (56) with data
from Table 1 in Oberbeck and Quaide. The inverse power law
(56) gives an adequate fit to the data for x in the range
40-100 meters, for "normal" and "flat-bottom" (1nc1ud1ng
"central mound") craters, and for "concentric ring" craters
larger than 70 meters. We may thus conclude that ZF has an

inverse power law distribution in Oceanus Procellarum, at
least for ZF > 6 meters. Furthermore, the slope on the

cumulative number density is approximately

a+-Y=u (57)

Recalling that «
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which is certainly within the range of possible values of vy.

For sufficiently large craters or sufficiently
small ones, the approximation (52) fails. Large craters are
formed almost wholly in the cohesive substrate, and small
craters are formed wholly in the fragmental layer, thus must
show essentially "normal" morphology except for small
differences corresponding to the differences in density and
cohesion between substrate and fragmental material. Thus

(NORMAL)EO(X) = EO(X) = C"/XY+1

for x very large or very small.
There are undoubtedly other size-dependent selec-

tion effects affecting the morphological classification. In
view of the great promise of the Oberbeck and Qualde method,

these effects merit further study.
DbLom -H- Hiareas

2015 ~AHM-kse A, H., Marcus
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CAPTIONS TO FIGURES

Possible theoretical distributions of total ejecta
blanket thickness. p(Z) is the probability density
of a positive stable law with index o, standardized
to A, = 1.

B
Typical thickness of total ejecta blanket on a mare
surface with initial crater population index
y = 2+0. For o>l the average thickness E{ZB}

is given as a function of the minimum diameter XO

of craters with significant blankets of ejecta.
1/a 1/a

For o<l the scale parameter AB B

and peak Mo(a) by
are gilven,
Craters formed in a fragmental layer (diagonal lines)
may (right side) or may not (left side) excavate

new material (crossed diagonal lines) from a cohesive
substrate (horizontal lines).

Cumulative numbers of craters of given morphological
type in Oceanus Procellarum, from Oberbeck and
Quaide (1967).

Frequency histograms of elevations on lunar surfaces.
(a)-(c) continental terraln (Rowan and McCauley, 1966).
(d) Mare Cognitum (Marcus, 1967).
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